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Abstract: The functionalization of peptides and proteins by aldehyde groups has become the subject of intensive research since
the discovery of the inhibition properties of peptide aldehydes towards various enzymes. Furthermore, peptide aldehydes are of
great interest for peptide backbone modification or ligation reactions. This review focuses upon their synthesis, which has been
developed following two main strategies. The first strategy consists of prior synthesis of the peptide, followed by the introduction
of the aldehyde function. The second possible strategy uses α-amino aldehydes as starting materials. After protection of the
aldehyde, peptide elongation occurs. At the end of the synthesis, the aldehyde function can be unmasked. Copyright  2006
European Peptide Society and John Wiley & Sons, Ltd.
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INTRODUCTION

Uses of Peptide Aldehydes

Peptide aldehydes are used in many applications. They
are suitable starting materials for further chemistry
involving the aldehyde function – e.g. generation of
reduced bond isosteres [1]. Furthermore, the carbonyl
chemistry offers unique possibilities for the segment
ligation of unprotected peptides in aqueous solution.
Indeed, stable linkages can be obtained by reacting
an aldehyde function with naturally occurring amino
acids. The β-amino thiol moiety of cysteine leads to
thiazolidine formation [2], whereas the β-amino alcohol
group of serine and threonine residues is involved in the
pseudoproline ligation [3]. Peptides functionalized by a
carbonyl group have also been studied extensively in
the context of oxime [4,5] or hydrazone [6] ligations.
Moreover, these compounds are potent inhibitors
of serine and cysteine proteases such as trypsin,
plasmin and papain [7]. Since this important discovery,
peptide aldehydes have been shown to inhibit other
proteases such as prohormone convertases [8] and
aspartyl proteases [9,10]. These inhibitory properties
result from the tetrahedral hydrates of the C-terminus
aldehyde function that mimics the transition state of
the substrate during hydrolysis by the enzyme.

Physicochemical Properties of Peptide Aldehydes

The chemical instability of peptide aldehydes is mainly
due to their high reactivity. But their optical instability
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also has to be considered. Indeed, in presence of an
acid catalyst, the carbonyl function can be protonated
and gives an enol intermediate losing the optical purity
of the α-carbon of the aldehyde. This epimerization
can take place during the synthesis or purification
of peptide aldehydes. It is worth noting here that,
to our knowledge, no method of purification without
epimerization of such peptide aldehydes is known. As
described earlier [11], the aldehyde signal in 1H NMR is
a good indicator of the possible epimerization of peptide
aldehydes. We recently proposed [12] a simple method
that allows the detection of the optical purity on a
model dipeptide aldehyde Boc-Val-Ala-H. In this study,
for each tested purification condition, the spectra of the
dipeptide aldehyde revealed two aldehydic proton peaks
(in CDCl3). These two signals, corresponding to the LL
and LD diastereoisomers, could be observed in CDCl3,
but not in DMSO-d6. We hope this model dipeptide
will be used to validate peptide aldehyde preparation
methods and/or purification techniques.

Synthesis of Peptide Aldehydes

Because of the interest in peptide aldehydes, several
studies have been devoted to the synthesis of these
compounds. The synthetic methods of peptide aldehy-
des are classified into two main categories (Scheme 1).
The first strategy consists of prior synthesis of the
peptide, followed by the introduction of the aldehyde
function to obtain the peptide aldehyde. The second
possible strategy uses α-amino aldehydes as starting
materials. The aldehyde moiety is present at the begin-
ning of the synthesis in a protected form. After peptide
elongation, the masked aldehyde is deprotected to yield
the peptide aldehyde. In this review, we will successively
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examine these two strategies, which have both been
widely described in the literature.

SYNTHESIS OF PEPTIDE ALDEHYDES VIA THE
INTRODUCTION OF THE ALDEHYDE FUNCTION ON
PEPTIDES

Oxydation of Peptide Alcohols

Oxydation of peptide alcohols in solution. Oxydation
of peptide alcohols to obtain peptide aldehydes is a well-
known method. In solution [13], the starting material
is a peptide ester 1, which is reduced into alcohol 2 by
sodium borohydride. Via the Pfitzner Moffatt method,
DMSO and dicyclocarbodiimine as electrophile are used
to obtain the peptide aldehyde 4. Sulphur trioxide as
electrophile can also be used. The oxide sulfonium
intermediate 3 is deprotonated in basic conditions and
generates the peptide aldehyde 4 and dimethylsulfide
(Scheme 2). According to the authors, this method is
epimerization-free. Care must be taken regarding the
quantity of base and the time of reaction. Optimization
is necessary for each type of substrate.

Oxydation of peptide alcohols on solid support. In
a recent paper [14], the oxydation of peptide alcohols
using the supported IBX reagent has been described.
The starting material is the supported peptide 5 on
TCP-resin, cleaved from the solid support in acidic
conditions to generate the peptide alcohol 6 in solution.
The following step is the oxidation of the peptide alcohol
using the commercially available Dess Martin–type
supported reagent. The obtained mixture contains the
peptide aldehyde 7 along with some peptide alcohol. To
eliminate this residual starting material, the authors
propose a catch-and-release purification procedure.
A supported threonine reagent is chemoselectively
condensed with the peptide aldehyde to form a
supported oxazolidine 8, which is washed as many

Peptide synthesis

Introduction of
the aldehyde

function

Protected
α-amino
aldehyde

N-terminal
elongation

Regeneration of
the aldehyde

function

Peptide aldehyde

Scheme 1 Strategies to obtain peptide aldehydes.
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Scheme 2 Oxydation of peptide alcohols in solution.
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Scheme 3 Oxydation of peptide alcohols on solid support.

times as necessary to eliminate the peptide alcohol. The
last step is a cleavage from the solid support to generate
the peptide aldehyde 9 (Scheme 3). The crude product
of the oxydation step is obtained in the optically pure
form. However, partial epimerization occurs during the
purification step: 50% epimerization at 60 °C and 20%
epimerization at room temperature were observed.

Reduction of Peptide Amides

Reduction of Weinreb amides in solution. Among all
the described preparations of N-protected peptide alde-
hydes, the reduction of Weinreb amides is one of the
most widely used. This method was successfully applied
to the synthesis of N-protected peptide aldehydes
[11] using benzyloxycarbonyl (Z), tert-butyloxycarbonyl
(Boc) and α-fluorenylmethoxycarbonyl (Fmoc) chem-
istry [15]. Weinreb amides 10 are reduced by lithium
aluminum hydride, at 0 °C in anhydrous THF, to form a
complex 11, which is then hydrolyzed to generate the
peptide aldehyde 12 (Scheme 4).

Reduction of Weinreb amides on solid support. This
strategy was applied to the solid-phase synthesis
of peptide aldehydes. This was initiated by the
synthesis of a linker [16] designed to incorporate the
methoxyamine. O-Methyl hydroxylamine 13 is reacted

with benzyl acrylate. The resulting N-alkylated O-
methyl hydroxylamine 14 is protected by the tert-
butyloxycarbonyl group. After deprotection of the
benzyl ester 15 by hydrogenolysis, the linker 16 is
coupled to the solid support (MBHA resin), allowing,
after deprotection, peptide elongation using standard
Boc/benzyl or Fmoc/tert-butyl chemistries. Treatment
with LiAlH4 yields the peptide aldehyde 17 in solution
(Scheme 5).

This Weinreb amide linker was used for the synthesis
of aspartic acid-containing peptide aldehydes [17] to
obtain β-secretase inhibitors [18] and in the parallel
synthesis of libraries of aldehyde derivatives [19].

Another recent Weinreb-type method uses the back-
bone amide linker (BAL) Support 18. Methoxyamine is
attached to the resin through reductive amination, then
acylation allows introduction of the first amino acid.
Standard chemistry is then used for the elongation of
the peptide. Depending on the reaction conditions for
the removal from the solid support, in acidic conditions
the hydroxamate 19 is obtained, and using lithium alu-
minum hydride as reductive agent, the aldehyde 20 is
obtained (Scheme 6).

For Weinreb amide reduction in solution or on
solid support, no over-reduction was observed, sug-
gesting the formation of the stable metal-chelated
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Scheme 4 Reduction of Weinreb amides in solution.
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Scheme 6 Reduction of Weinreb amides on a BAL-type support.

intermediate described by Nahm and Weinreb [20]. Fur-
thermore, epimerization studies showed that this type
of method is epimerization-free. However, aspartic- and
glutamic-residue-containing peptides, bearing an ester-
protecting group on their side chain should be avoided
because of the possible reduction of these ester groups.
As previously described [11], owing to the presence of
several amide functions, the amount of LiAlH4 has to
be increased as a function of the length of the peptide.
This reduces the application of this method to small
peptides, and also in the case of large-scale synthesis.

Reduction of morpholine amides in solution. An
interesting alternative to the Weinreb amides is the

morpholine amides 21 [21], which can be reduced
by LiAlH4. It also forms a stable complex 22, which
avoids over-reduction, and generates the aldehyde 23
by hydrolysis (Scheme 7). This method is economical
compared to the Weinreb method. It is equivalent to the
Weinreb amide method as far as optical purity, yield
and stability in the peptide synthesis conditions are
concerned. Only the Fmoc chemistry must be carefully
handled: during the reaction of the first Fmoc amino
acid with morpholine, the carboxylic acid of the Fmoc
amino acid has to be preactivated, and then morpholine
should be slowly added to it to avoid Fmoc deprotection.
It should be noticed that, to our knowledge, this method
has not been transposed on a solid support.
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Scheme 9 Reduction of phenyl esters on solid support.

Reduction of Peptide Esters

Reduction of phenyl esters in solution. Zlatoidsky
[22] describes the preparation of N-protected peptide
aldehydes via the reduction of the corresponding phenyl
esters 24 by lithium tri(tert-butoxy)aluminum hydride
(Scheme 8). The yields of the obtained aldehydes 25 are
quite interesting (70–80%). This method is particularly
recommended for compounds containing functional
groups potentially sensitive to a more potent reductive
agent.

Reduction of phenyl esters on solid support. Com-
mercially available 4-hydroxy-benzoic acid 26 is
reacted with N-protected amino acid carboxyanhy-
drides [23–25], leading to the corresponding N-
protected amino esters 27. These compounds are
directly anchored to an amino resin. Classical pep-
tide elongation on solid support can then be under-
taken (Scheme 9). N-protected α-amino aldehydes 29
are obtained by AlLiH(OtBu)3 reduction of the corre-
sponding N-protected α-amino phenyl esters linked to
the support 28, as described by Zlatoidsky [22]. A
mixture of the corresponding aldehyde and alcohol is
obtained. Reduction in solution of N-protected amino
phenyl esters was also studied by these authors, and
the aldehyde was produced as the major product with
a minor contamination corresponding to the alcohol.
Several peptide aldehydes were synthesized using the

phenyl ester linker [26]. Again, the presence of both the
peptide aldehyde and alcohol was observed. This phe-
nomenon could be explained by the over-reduction of
aldehyde by an excess of hydride. However, this strategy
is appropriate for the preparation of peptide aldehydes
leading to the synthesis of modified pseudopeptides
(reduced bonds, etc.) [26].

Synthesis Via Reduction of Peptide Thioesters

From solid-supported thioester peptides 29, a mild
method for the generation of peptide aldehydes
has been developed by Tam and co-workers [27]
(Scheme 10). Peptides are synthesized using Boc/
benzyl chemistry on MBHA or TentaGel resins con-
taining thiopropionic acid as a nondetachable linker
anchored on the aminomethyl resin. Treatment of N-
protected peptide thioester with Pd0 and Et3SiH pro-
duces the C-terminal peptide aldehyde 30. The reaction
is performed using mild experimental conditions under
nitrogen in tetrahydrofuran or dichloromethane using
20–30-fold excess of Et3SiH at 4 °C to avoid epimeriza-
tion of the C-terminal amino acid residue. The catalyst

Peptide NH
O

R
HPeptide NH

O

R
S

H
N

O

Pd(0), Et3SiH

29 30

Scheme 10 Synthesis via reduction of peptide thioesters.

Copyright  2006 European Peptide Society and John Wiley & Sons, Ltd. J. Pept. Sci. 2007; 13: 1–15
DOI: 10.1002/psc



6 MOULIN, MARTINEZ AND FEHRENTZ

is obtained by in situ reduction of Pd(OAc)2 and the
yields range from 80 to 89%.

Synthesis Via Thiazolidines

Synthesis via thiazolidines in solution. The use of a
peptidyl N-methylthiazolidine as a peptide aldehyde
precursor has been described in solution [28]. The
starting material consists of a dipeptide 31 composed
of the C-terminal residue of the target peptide
aldehyde bearing an additional C-terminal serine
methyl ester residue, protected on the side chain
by a tertiobutyldimethylsilyl group. Treatment of
this dipeptide with the Lawesson reagent yields the
corresponding thioamide 32 [29]. Starting from these β-
hydroxy thiopeptides, two pathways were investigated.
In the first strategy, the ‘pseudopeptide’ was built and
the thiazolidine generated at the end of the synthesis.
The second pathway involved the preliminary formation
of the amino thiazolidine 33, followed by elongation of
the ‘pseudopeptide’. According to the first route, after
peptide elongation of 32, the alcohol moiety on the
serine side chain was deprotected and a dihydrothiazole
34 was formed by an intramolecular Mitsunobu
reaction. After N-methylation and reduction, the
thiazolidine 36 was obtained according to Dondoni
[30]. In the last step, hydrolysis was performed using
CuO·CuCl2·2H2O and the peptide aldehyde 37 was
generated (Scheme 11). In the second route, because
the side reaction of intramolecular coupling of the ester
with the amine occurred during the elongation step,
the stepwise peptide synthesis was performed from the

corresponding thiazolidine diethylamide derivative 35
(Scheme 11).

Synthesis via thiazolidines on solid support. The
same authors adapted this strategy on solid support
[28]. The thiazolidine 38 was prepared in solution
and coupled to an amino hexanoic acid–bound
MBHA resin. Peptide elongation was undertaken using
either Boc/benzyl or Fmoc/tert-butyl SPPS strategy.
Hydrolysis was performed using CuO, CuCl2·2H2O in a
CH3CN/H2O/DMF mixture, and the peptide aldehyde
39 was extracted from the aqueous solution with ethyl
acetate (Scheme 12).

Using the thiazolidine strategy, either in solution or
on solid support, the obtained peptide aldehydes are
of good purity. However, there are a large number
of steps involved in obtaining the key intermediates.
Another problem is the use, during the last step, of
copper salts, which are difficult to eliminate. They can
be troublesome when biologically active compounds are
synthesized.

Synthesis of Peptide Aldehydes Containing an
Arginine Residue at the C-terminus Via a Lactam
Formation

Garrett et al. [31] described the preparation of a series of
tripeptide aldehyde derivatives containing an arginine
residue at the C-terminus. The synthesis used in
this study is outlined in Scheme 13. Activation of the
carboxylic acid 40 of the starting material with isobutyl
chloroformate is followed by cyclization to the lactam
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Scheme 11 Synthesis via thiazolidines in solution.
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Scheme 13 Synthesis of peptide aldehydes containing an arginine residue at the C-terminus.

41 in high yields. Controlled reduction of the peptide-
elongated lactam followed by catalytic hydrogenation
under acidic conditions yields the targeted peptide
aldehydes 42.

SYNTHESIS OF PEPTIDE ALDEHYDES VIA THE
PROTECTION OF α-AMINO ALDEHYDES

Protection Via a Semicarbazone Moiety

Protection via a semicarbazone moiety in solu-
tion. In this method, the aldehyde function of
an α-amino-aldehyde 43 is masked by a stable
semicarbazone moiety 44, which is easy to iso-
late and purify [8]. After elongation, the cleavage
is achieved by acid hydrolysis in the presence of
formaldehyde (Scheme 14). The yields are acceptable
(30–60%) and the epimerization rate is rather low (less
than 2%).

Protection via a semicarbazone moiety on solid
support. This approach [32], derived from a solution
preparation of peptide aldehydes [33], involves the
solution synthesis of a semicarbazone carboxylic acid
linker 45 that can be attached to the commercially
available MBHA resin. Cleavage with dilute aqueous

acid/formaldehyde provides the free peptide aldehydes
46 (Scheme 15).

This method was used to explore the struc-
ture–activity relationship of peptidomimetic caspase
inhibitors [34].

Another linker based on the dibenzosuberyl system
[35] has been developed [36]. Taking advantage of the
stability of semicarbazones and their easy purification,
a semicarbazide linker has been synthesized in two sim-
ple steps starting from the corresponding amine linker
(Scheme 16). These reactions are monitored using IR
spectroscopy, and functionalities of 0.2–0.25 mmol/g
can be obtained. The C-terminal residue is introduced
on the solid support as a Fmoc-protected amino alde-
hyde in the presence of DIEA (70–100% yield) and the
peptide sequence can then be elongated using classi-
cal SPPS. The semicarbazone peptides 47 are released
from the support by TFA treatment (TFA/H2O: 9/1,
1.5 h), and treatment with pyruvic acid provide the cor-
responding aldehydes 48. This method yields optically
pure peptide aldehydes.

Protection Via an Oxazolidine Moiety on Solid
Support

A paper reported the use of a linker based on the
oxazolidine moiety [37]: this method was proposed

Copyright  2006 European Peptide Society and John Wiley & Sons, Ltd. J. Pept. Sci. 2007; 13: 1–15
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by the CHIRON Company on Synphase Crown solid
supports. A supported seryl or threonyl residue 49
reacted with an aldehyde (in this case, the α-amino
aldehyde or an amino acid derivative) to yield an
imine intermediate 50 that cyclizes to yield a stable
oxazolidine 51. After peptide elongation, the aldehyde
molecule 52 is generated and removed from the support
by treatment with a mild aqueous acid (Scheme 17).
Interestingly, oxazolidines are relatively stable when
treated with nonaqueous TFA mixtures, so acid labile
side-chain protecting groups can be removed without
altering the oxazolidine moiety. Thus, the peptide
synthesis can be performed using Fmoc chemistry.
The secondary amine of the oxazolidine ring, although
quite unreactive, can be masked by a Boc-protecting
group. This method allows the obtainment of pure
crude aldehyde derivatives, which is highly valuable
for combinatorial chemistry. However, no comment
concerning epimerization is provided. Sorg et al. [14]
note nonnegligeable rates of epimerization occurring

during the oxazolidine formation: 50% epimerization at
60 °C and 20% at room temperature.

Protection Via a N-Methylthiazolidine Moiety

Chiral N-methyl thiazolidine-masked α-amino aldehy-
des are used for solid-phase peptide elongation. Gros
et al. [38] proposed to use N-trityl-protected α-amino
aldehydes 53, which, as compared to N-Boc protection,
preserve the optical integrity of the aldehyde during
condensation of the amino aldehydes with L-cysteinyl
residues 54 (Scheme 18). The authors prepared the Ac-
Tyr-Val-Ala-Asp-H caspase inhibitor on a solid support
starting from the N-trityl-amino thiazolidine aspartyl
derivative as a validation of this process.

Protection Via an Olefin Moiety

Protection via an olefin moiety using a classical
resin. One of the cleanest methods for the syn-
thesis of peptide aldehydes is the treatment of an
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10 MOULIN, MARTINEZ AND FEHRENTZ

ethylenic compound linked to a solid support by
ozone (Scheme 19). The resulting ozonide is then
treated by thiourea to yield the corresponding alde-
hyde. The N-protected α,β-unsaturated γ -amino acid
56 is synthesized by a Wittig reaction between the
carbethoxymethylene triphenylphosphorane and the N-
protected α-amino aldehyde 55 followed by saponifica-
tion to yield the corresponding ethylenic compound,
which can be anchored to the solid support [39].
After removal of the N-protecting group, elongation
by classical methods of solid-phase peptide synthesis
(Boc/benzyl or Fmoc/tert-butyl strategies) is possible.
The model tripeptide aldehyde Boc-Phe-Val-Ala-H was
synthesized. This peptide was analyzed by RP-HPLC
and studied by 1H NMR in CDCl3 without purifica-
tion. The results showed that peptide aldehydes with
high purity can be obtained using this strategy with
no detectable trace epimerization (within the limit of 1H
NMR sensitivity).

The use of this strategy implies the synthesis of
a linker for each different amino acid. As shown
by Frechet et al. [40] and Hodges et al. [41], Wittig
reactions between a phosphonium salt-containing
polymer and an aldehyde to produce an unsaturated
compound linked to the polymer is possible. This
approach was explored for the synthesis of peptide
aldehydes by ozonolysis [42]. The strategy consists
in anchoring a Wittig–Horner reagent on the solid
support. Then reaction with the soluble N-protected

α-amino aldehyde is performed directly on the solid
support.

Protection via an olefin moiety using a Wittig-type
resin. The route (Scheme 20) involves the anchoring of
chloroacetic acid 57 on MBHA resin with isobutylchlo-
roformate (IBCF) as an activating agent followed by the
reaction of the modified resin with triphenylphosphine
to form the phosphonium salt 58. The phosphorane 59
is formed with butyl lithium or potassium tert-butylate
[43]. After reaction with the N-protected α-amino alde-
hyde, elongation of the peptide can be performed. The
derivatized peptidyl resins are then subjected to an
ozone stream and the peptide aldehydes 60 recovered,
as previously described. A similar approach was devel-
oped by Hall et al. [44] for the combinatorial synthesis
of peptide aldehydes.

Protection via an olefin moiety using a Wittig–Horner-
type resin. The synthetic pathway (Scheme 21) consists
in anchoring diethylphosphonoacetic acid 61 on MBHA
resin with benzotriazol-1-yloxytris(dimethylamino)
phosphonium hexafluorophosphate (BOP) as coupling
reagent. The carbanion is then generated with vari-
ous bases as described in the literature [45] and the
following steps achieved as previously described.

For both strategies described in the sections ‘‘Protec-
tion via an olefin moiety using a Wittig-type resin’’ and
‘‘Protection via an olefin moiety using a Wittig–Horner-
type resin’’, the study was performed on the model
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peptide Boc-Phe-Val-Ala-H and various conditions were
tested. All HPLC chromatograms of the crudes showed
a high degree of purity. Surprisingly, 1H NMR analysis
of the aldehydic proton signals indicated some epimer-
ization of the α-carbon of the C-terminal residue. When
the triphenylphosphonium salt was used, concentra-
tion of butyllithium did not have any effect on the
epimerization of the resulting aldehyde. The use of
potassium tert-butylate did not improve the reaction
(yield and epimerization). Epimerization was reduced
to a few percent when the phosphorane linked to
resin was washed by THF and DCM before addition
of the N-protected α-amino aldehyde, but the yield
decreased. The best conditions were found using 1,8-
diazabicyclo(5.4.0)undec-7-ene (DBU) in the presence
of magnesium bromide. In this case, the yields were
almost quantitative and epimerization was reduced to
less than 10%.

Protection Via an Acetal on a BAL Solid Support

The BAL strategy was proposed by Jensen et al. [46].
The first step is the on-resin reductive amination. The
next step consists in the acylation of the secondary
amine attached to the handle by the penultimate
amino acid residue of the desired peptide. After peptide

elongation, treatment of the peptidyl resin for 2 h with
trifluoroacetic acid (TFA)/H2O (19/1) cleaves the acid
labile side-chain protecting groups and concomitantly
the acetal protects the C-terminal aldehyde moiety,
resulting in the release of the peptide 62 from the
solid support (Scheme 22).

This method has been recently exemplified using 1,3-
dioxalane as the acetal-protecting group [47] for the
aldehyde moiety.

Synthesis of Peptide Aldehydes Containing an
Arginine Residue at the C-terminus Via the
Protection of the Boc Ng-Nitro-L-Argininal

In solution. Serine protease inhibitors generally contain
an arginine residue at the C-terminus of their sequence,
and their synthesis is always a challenge. Tamura
[48] et al. proposed a general method for the synthe-
sis of these peptide arginals, which utilizes the Ng-
nitro-L-arginal ethyl aminal·HCl 65 as starting material
(Scheme 23). This procedure uses the fact that pro-
tected argininal can form an aminal moiety by reaction
between the aldehyde function and the δ-amino group.
Treatment of Boc Ng-nitro-L-arginal 63 with ethanol in
the presence of a catalytic amount of hydrochloric acid
produces the corresponding aminal 64 as a mixture
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12 MOULIN, MARTINEZ AND FEHRENTZ

of anomers. The Boc group is then cleaved with HCl
in ethanol to afford the corresponding amino aminals
65. After peptide elongation, hydrogenation followed by
selective hydrolysis with HPF6 produces the final alde-
hyde 66. Hydrogenation followed by hydrolysis with 3.0
N HCl also afforded the peptide aldehyde, but in a lower
yield.

On solid support. This method has been transposed
on solid support [49]. The hydroxyl function gen-
erated on compound 67 is tethered with ethyl-6-
hydroxyhexanoate by acid catalysis. After hydrogenol-
ysis of the nitro group, reprotection of the guanidino
moiety by an Alloc group and ester hydrolysis, the
aldehyde precursor is ready for anchoring to the solid

support. Peptide elongation is achieved by using clas-
sical Fmoc chemistry. Palladium(0)-catalyzed removal
of the Nω-Alloc moiety is followed by hydrolysis with a
TFA/CH2Cl2/H2O cocktail to cleave the linker and any
acid-labile side-chain protecting group (Scheme 24).
The peptide aminal can then be hydrolyzed to generate
the desired aldehyde.

Synthesis of Peptide Aldehydes Containing an
Aspartic Residue at the C-terminus

Chapman described the synthesis of an interleukin-
1β-converting enzyme inhibitor [50] containing a
C-terminal aspartyl aldehyde. The synthesis of such
derivatives starts from commercially available aspartic
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acid β-tert-butyl ester 68, which is N-protected with
alloc group in the presence of sodium bicarbonate.
The carboxylic acid is then converted into a mixed
anhydride by reaction with isobutyl chloroformate in
the presence of N-methylmorpholine, and reduced to
the corresponding alcohol 69 with sodium borohydride
(Scheme 25). The alcohol is oxidized to the aldehyde
under Swern conditions [51] and immediately treated
with benzyl alcohol and p-toluenesulphonic acid.
After 16 h, addition of trifluoroacetic acid promotes
cyclization into the desired O-benzylacylal 70, which is
isolated as a 1 : 1 mixture of diastereoisomers. Using the
peptide as the proton source [52] for the Alloc removal,
addition of Bu3SnH and (Ph3P)2PdCl2 rapidly removes
the Alloc group. The crude material is coupled with the
desired peptide in the presence of hydroxybenzotriazole
and ethyl dimethylaminopropyl carbodiimide to afford
the corresponding elongated peptide. 400 MHz 1H NMR
in CD3OD shows the presence of two diastereoisomeric
hemiacetals and no epimerization at the α-carbon.
Hydrogenolysis of this peptide O-benzylacylal using
Pearlman’s catalyst in methanol affords the desired
inhibitor 71 (Scheme 25).

Graybill et al. [53] chose to investigate the use
of stereochemically stable semicarbazone derivatives
72 as a masqued aldehyde equivalent, according to
Scheme 26. In contrast to O-benzylacylal, semicar-
bazone displays excellent stability and is neither volatile
nor hydroscopic. It can be used in a variety of typical
peptide-coupling protocols. A further advantage is that
the elongated product is obtained as a single stereoiso-
mer rather than a 1 : 1 mixture of diastereoisomers,
thus simplifying purification and multistep synthesis.
Smooth conversion of semicarbazone 73 to aldehyde
74 is performed by treatment with a 5 : 5 : 1 mixture of
methanol/acetic acid/37% aqueous formaldehyde fol-
lowed by an aqueous workup. The 1H NMR spectrum
(CD3OD) shows a 1 : 1 mixture of diastereomeric cyclic
hemiacetals 75 and no trace of free aldehyde.

CONCLUSIONS

Many strategies have been developed for the modifica-
tion of peptides by aldehyde groups. The solid-phase
peptide synthesis and the design of new linkers have
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facilitated access to peptide aldehydes, using both
strategies. However, there is still a need for novel meth-
ods that allow the synthesis of peptide aldehydes of high
chemical and optical purity. Owing to the importance
of the potential applications of these compounds, we
believe that peptide and protein chemists will continue
their research in this field.
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